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Efforts at providing a physical-axiomatic foundation of the space-time structure 
of the general theory of relativity have led, when based on simple empirical facts 
about freely falling particles and light signals, in a satisfying manner only to a 
Weyl space-time. By adding postulates based on quantum theory, however, the 
usual pseudo-Riemannian space-time can be reached. We present a new classical 
postulate which provides the same results. It is based upon the notion of the 
radar distance between freely falling particles and demands the approximate 
equality of the growth of the radar distance for particle pairs of equal, small 
initial velocities. We show that given this, a property results, as found in earlier 
work by the author, that distinguishes between Weyl and Lorentz space-times. 
The property refers to a special metric and decides whether its metric connection 
has the given free-fall worldlines as geodesics or not. It consists in the vanishing 
of the mixed spatiotemporal components gi4 of this metric in suitable coordinates 
along the worldline of the freely falling observer, as the rest system of which 
the coordinates are constructed. 

1. I N T R O D U C T I O N  

1.1. Introduction 

A l m o s t  all w o r k  in the genera l  theory o f  re la t iv i ty  starts with some  
mathemat i ca l  a s sumpt ions  about  the space - t ime  mode l  in which  the inves t iga-  
t ion is to be pursued.  A l t h o u g h  there are  o f  course  mot iva t ions  in the back-  

ground,  one should  not  accept  such assumpt ions  wi thout  ask ing  for sound  
phys ica l  subs tant ia t ion .  In c lass ica l  genera l  re la t iv i ty  the c o m m o n  f r a m e w o r k  
o f  the space - t ime  mode l s  used in most  cases  is a Loren tz ian  (or pseudo-  
R iemann ian )  man i fo ld  (M, g)  with a metr ic  tensor  g o f  s ignature  ( - ,  ± ,  -+, 
7 ) ;  but  some t imes  o ther  or  genera l i zed  space - t imes  are  cons idered ,  i.e., this 
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picture is not self-evident enough to exclude all alternatives. Thus, many 
authors have tried to formulate physical foundations for the mathematical 
structures existing in the space-time models. For instance, the topology of 
the used manifolds participates in determining which physical effects can 
occur, so it is interesting to see if one can give a physical basis for it. 

A typical way of providing physical foundations for space-time geometry 
is to consider a small number of simple physical objects and simple experi- 
ments with them, to translate them into mathematical axioms, and to derive 
that space-time has to be seen as a Lorentz manifold; we will sometimes call 
such reasoning a space-time theory (STT). Typical primitive concepts for 
this purpose are freely falling physical systems and light signals; statements 
about these do not presuppose much physics. The most influential of such 
theories and a kind of paradigm is that of Ehlers et al. (1972) (EPS), which 
has stimulated a lot of further work; but surprisingly, those postulates which 
directly express the properties of freely falling particles and light rays yield 
only a Weyl instead of a Lorentz manifold. Formally a Weyl geometry is 
distinguished from the latter by having a conformal equivalence class in place 
of a single metric, and in general none of the conformal metrics has the free- 
fall worldlines as the geodesics of its metric connection. Physically the crucial 
difference is the possibility of a so-called "second clock effect," that is, the 
path or history dependence of the clock rates. That free fall of particlelike 
bodies and light propagation yield only a Weyl geometry has revived interest 
in Weylian space-time models (for instance, Perlick, 1991; Chandra, 1984; 
K/3hler, 1978) and led to the presumption that quantum theoretic considera- 
tions might be necessary to close the gap to the usual general relativistic 
geometry (Ehlers, 1973). Audretsch (1983) found a way to accomplish this 
(see also Audretsch et al., 1984); later a comprehensive axiomatic approach 
applying matter wave fields as primitive objects was developed by Audretsch 
and L~immerzahl (1988, 1991a, b, 1995). 

Another recent STT (SchrtJter, 1988; SchrOter and Schelb, 1992, 1993; 
Schelb, 1992) has motivated a new look at this problem. It is a theory which 
applies in part similar concepts to EPS, i.e., purely classical means, and is 
of interest here in particular because it tries vigorously to avoid all superfluous 
and possibly confusing, not directly physically motivated mathematics. In 
this theory one gets relatively naturally the Lorentzian space-time structure; 
a comparable "Weyl conundrum" does not appear. Thus the question is raised 
whether for the EPS theory there is an alternative to the recourse to quantum 
theory in order to achieve its pseudo-Riemannian completion. 

As a result of the considerations which this new theory has inspired (cf. 
also Schelb, 1995b), we present here a new postulate, which excludes Weyl 
manifolds as EPS models. It involves only light signals and freely falling 
particles in formulating in an obvious way the concepts "radar distance" and 
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"radar velocity." Roughly, the postulate expresses that a freely falling observer 
measures for a pair of freely falling particles ejected by him the same radar 
distance, at least if they have small initial radar velocities. Its deeper meaning 
is the formulation of a property of the path structure of free-fall worldlines, 
which to our knowledge has not been previously achieved. 

1.2. Mathemat ica l  Basis 

Our mathematical point of departure is determined by the axioms of 
EPS up to Axiom C, i.e., by a Weyl spacetime. Mathematically, a Weyl 
manifold is a triple (M, c5, V w) consisting of: 

(i) A four-dimensional manifold M, which we assume to be of class 
C ~, the topology of which is Hausdorff and second countable. 

(ii) A conformal equivalence class ~ of metrics g on M with Lorentzian 
signature (+1, +1, +1, -1 ) .  

(iii) A symmetric linear connection V w on M with vanishing torsion. 

The set of timelike geodesics ofV w (without specification of parametriza- 
tion) constitute the so-called projective structure of (M, ~, VW); they are 
physically interpreted as the worldlines of freely falling particles. The null 
paths of~3 are interpreted as worldlines of light signals; they are VW-geodesics, 
too. The Axiom C of "compatibility" of the conformal and projective struc- 
tures expresses the physical experience that freely falling particles can approx- 
imate ("chase") the worldlines of light arbitrarily closely. 

A Weyl manifold where there is a g ~ ~3, so that for its metric connection 
one has Vg = V w, is called reducible. 

1.3. Outl ine  of  This Approach  

The strategy of this paper is as follows: We formulate a new postulate 
by which we will enrich the sketched mathematical structures of the EPS 
theory. The models of the EPS theory (i.e., Weyl space-times) which addition- 
ally obey this postulate constitute a subclass of the EPS space-times. Our 
goal is to show that this subclass consists of reducible Weyl manifolds. In 
another paper (Schelb, 1995a) we have shown that reducible Weyl manifolds 
(which "contain" a Lorentz manifold) are distinguished from irreducible ones 
by a certain property. Thus the task here is to demonstrate that the models 
of the subclass possess this property. The property relates to a special metric 
out of ~ and to its representation in suitable locally geodesic coordinates; it 
consists in the vanishing of the gi4 components, i = 1, 2, 3, of the metric 
along a certain particle worldline. Although this may seem a somewhat hidden 
feature, it is nonetheless a natural one from a heuristic point of view: One 
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can reverse the direction of  thought and look back from a special model to 
the axiomatics. If in our case one takes a Lorentzian manifold and reconstructs 
in it the EPS construction, then the choices which we make are near at hand. 
Also, the quoted more recent STT serves as a heuristic guide in this. 

However, in contrast to this condition in special coordinates, the postulate 
from which it is to be derived should be formulated in a coordinate-indepen- 
dent manner; this is done. Furthermore, it is based upon no more than the 
primitive notions of the EPS axiomatics, essentially free fall and light propaga- 
t i o n - t h a t  is, purely classical concepts. 

In Section 2 we introduce the necessary tools and state the announced 
postulate. The purpose of  Section 3 is to enable the formulation of the 
mentioned condition: We give a brief sketch of  the construction of  the confor- 
real class of  the EPS theory, choose a special metric from it, and construct 
the special coordinate system. Sections 4 and 5 draw the consequences of 
the postulate in these coordinates: The former shows in which way the pairs 
of particles used in the postulate appear in the coordinates, the latter evaluates 
its proper statement with respect to the metric components. 

2. RADAR DISTANCES AND THE POSTULATE 

In this section we introduce the tools for the statement of  the postulate. 
Of  central importance is the concept of  "radar measurements." By this we 
mean a procedure where the observer (a particle) emits a light signal which 
is then reflected in an event on the worldline of another particle in its 
neighborhood and arrives again at the observer worldline. If there is a parame- 
trization ("clock") at the latter, two numbers can be assigned to the events 
of emission and rearrival, respectively, of  the light signal on it. The difference 
of these numbers may be seen as a "radar distance." 

With regard to the question of which kind of  empirical experiment 
should be used as the basis of  an STT, we take the view that such radar 
measurements are not only suitable, but are the most convincing kind of  data 
for this. The above-quoted recent STT tries to formulate all its empirical 
inputs as statements about a version of  such radar measurements. 

Perlick (1987, 1994) in his work on the introduction of the concept of 
a standard clock in EPS models, respectively Weyl space-times, used similar 
tools. Since here we work in the EPS framework, we can essentially apply 
the terms which he developed. 

Consider the worldline P of  a particle together with a parametrization 
~,: I C R ~ P C M, making it into a c u r v e .  According to Axiom Lt of  EPS 
there are for each event q • P two open neighborhoods U C V C M so that 
any event p • U can be connected to P by exactly two light signals which 
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do not leave V (see Fig. 1). Thus there are two events qi, q: E P where the 
light signal starts and rearfives, respectively; if ~(h) = q~ and 3'(t2) = q2, 
the real numbers tl and t2, with t2 > tt, can be used to define the functions 

1 p: U ~ R+\{0} and T: U ~ I C R by p(q) := {(t2 - tl). "r(q) :=-f(t2 + tO. 
If there is a worldline P' of another particle passing through U, the observer 
P can apply this to all events of P '  C) U; by using "r as parametrization of  
P' ,  he can define (and measure) p('r) for P ' .  But one can also see the radar 
distance p as a function of  the parametrization of  P, since "r e (tt, t2): 
p(t) := p('r) for "r = t. It is in this form, as a function of the parameter t of  
P, that it will be used in the following. 

So far, we have considered arbitrary, not necessarily freely falling parti- 
cles; all the "radar" concepts work for this general class of  particles. In the 
sequel, however, we restrict our attention to freely falling particles, for the 
observer P as well as for the "test particle" P'. Furthermore, we will consider 
only situations where P and P '  coincide at one event; intuitively this can be 
seen as an event where P'  "starts moving away" from P. 

Having registrated a radar distance to P '  as function of  its parameter t, 
P can also determine the rate of change of  the distance, the "radar velocity" 
(likewise a function of  t): p'(t) = dp/dt. Since the function 9(t) is not differenti- 

Fig. 1. Situation of  radar measurements. 
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able on P, one can in the event of intersection t70 only consider the limit of 
p'(t) from one side; we are interested in the limit from above, i.e., t > to: 

lim p'(t) =: 13 (1) 
i---) t 0 

13 can be read as an initial velocity with which P' moves away from P in 
Po- Although p(t) and p'(t) are defined via a special parametrization, the limit 
value 13 is independent of the parameter of P; this can be shown directly by 
methods similar to those used below or, more quickly, by inspection of certain 
coordinate-free expressions involving 13 which are derived in Perlick (1987). 
Though the parametrization independence is gratifying, it is not crucial for 
what follows. 

Let us now consider situations in which another freely falling particle 
P" coincides with P and P'  in the same P0- Now, P can measure radar distances 
and velocities of P", too, and compare with those of P' .  Let us assume, in 
particular, that P' and P" move away in P0 "in opposite directions"; with the 
available mathematical concepts such an expression makes sense: It means 
that the tangent vectors to the curves P, P ' ,  P" in TpoM are linearly dependent. 
If we designate one direction with a +,  the other with - ,  the distances of 
P' and U' can be denoted as p+(t) and p-(t), respectively. We will consider 
now pairs of freely falling particles P ' ,  P" moving away from P in a P0 with 
equal initial velocities: 13(P') = 13(P"). Our question is: How will the radar 
distances p(t) develop further with t for such a pair? Will they remain nearly 
equal, as is true in classical mechanics in the case of free motion and equal 
initial velocity, or not? The former means that radar signals which are sent 
out in the same event to P' and P" rearrive at P in nearly the same event. 
The "nearly" means "at least for pairs of sufficiently small 13"; i.e., we 
consider pairs of equal 13 and go to the limit 13 ---) 0. By the postulate we 
distinguish among the EPS models those in which this approximate equality 
is given everywhere. 

As argument under the limit we use p(t0 instead of the above p(t), 
where tl belongs to the event of emission "/(tO ~ P of the radar signals; in 
order to avoid confusion we denote the distance as a function of the time of 
emission by r(tO. This is physically more natural (one compares measure- 
ments started in the same event) and makes no mathematical difference for 
our statements. By abuse of notation we omit the subscript "1" in the follow- 
ing. The expression r÷(t)/r-(t) in the postulate is the ratio of radar distances 
for one pair P' ,  P" of equal 13, the measurement of which was initiated in 
the event ",/(t). We cannot assume that such radar measurements for particles 
ejected in a P0 can be performed in all events on the observer worldline 
occurring "later" than Po. But according to the above introduction of  the 
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radar method there is at least a finite "time interval" in which this is possible. 
In the postulate we will designate it as (to, t'). 

Postulate 1. For every particle P and every event Po ~ P the following 
statement holds independently of the parametrization: Consider the set of 
those pairs of freely falling particles whose worldlines run through Po in 
opposite directions with equal 13 with respect to P. If to is the parameter value 
assigned to P0, then there is a t' > to so that 

lim r+(t) - 1 for all t ~ (to, t') (2) 
~-~o r-(t) 

Remarks. 1. The postulate employs only classical concepts, and nothing 
beyond what is available in the original EPS theory. It is of purely local 
character. 

2. The experimental testability and plausibility of  the postulate is obvi- 
ous: A freely falling satellite which ejects simultaneously freely falling test 
particles in opposite directions and with sufficiently small equal initial veloci- 
ties can test the validity of  the postulate. According to present knowledge, 
violations of it are not expected. 

3. In the example of  a Minkowski space-time the postulate is fulfilled 
even without the limit of  small initial velocities. 

3. TOOLS F O R  APPLYING THE POSTULATE 

3.1. EPS C o n f o r m a i  Structure  

Below we will evaluate the consequences of  the postulate for a certain 
metric in the EPS space-time models. As a basis for the selection of  this 
special metric we have to recall the way in which a conformal structure is 
introduced in the EPS theory with the help of particles and the properties of 
light signals. 

In a first step one defines an auxiliary function hq: If q ~ M is an 
arbitrary event, and P an arbitrary particle worldline passing through q, then 
as described above there are to each p ~ U(q)kP exactly two events e~, e2 
E P connected to P by light signals. If there is a parametrization f of P, 

f :  R l ,-, P, we can apply this in order to define in U(q) a function hq: 
U(q) ~ R by 

hu(p) :=  - {f(e2) - f(q)} • {f(eO - f(q)} (3) 

Since only differences are involved, a shifting of the parameter values so 
thatf(q) = 0 does not change hq, but gives it a simpler form: 

hq(p) = - f ( e z ) ' f ( e l )  (4) 
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(we have not changed the notation o f f ) .  If, in particular, p e P, there are 
no actual light signals from P to p: In this case we define el = p = e2 and 
thus can extend the definition of hq to U(q) U P [where P = P f~ U(q)]. 
For p • P one has 

hq(p) = _f2(p) (5) 

Decisive for the suitability of the hq-functions as a basis of the conformal 
class is its value in H u, which is defined as set of  all events which are 
connected with the given q by a (worldline of a) light signal: I f p  • H u, this 
means either el = q or e2 = q, so one can read off from (3) or (4) 

hq(p) = 0 (6) 

From the postulates it follows [or, in another version of the theory, it itself 
is a postulate (Meister, 1992)] that hu is of  class C 2 with respect to its 
argument p. The differentiability allows us to define the metric tensor as a 
second derivative of hq taken at the point q; i.e., the definition is point by point. 

Definition. Given an event q • M, a particle P, so that q • P, and any 
parametr izat ionfof  P, then a metric tensor gu is defined in q by the following 
prescription: For every pair of vectors Yq, Z u • T,M (resp. extensions of Yu 
and Zq around q) the map gq: TqM X TqM ~ R yields the number 

gq(Yq, Zq) = Y(Z(hu))Iq (7) 

Some properties have to be proven in order to demonstrate the well-defined- 
ness of gq: 

(i) In general such a twofold derivation of a function is not a tensor; in 
this case, however, it is because of 

dhqlq = 0 (8 )  

(ii) gq(Yq, Zq) = gq(Zq, Yq). 
(iii) If V,~ • TqM is the tangent vector of the worldline of  a light signal 

(i.e., along this worldline hq ~ 0) ,  then 

gq(Vq, Vq) = 0 (9) 

(iv) The auxiliary functions hq depend on q; in each q, the procedure 
gives another function. Correspondingly, so far one does not know anything 
about the connection of gu~ and gq2 for two neighboring events ql, q2. Thus 
one postulates (one way or the other; cf. the remark above on C z for hq): gq 
is of  class C z with respect to q. 

In the definition of gq a special particle P and a special parameterfhave 
been used, but one can show without difficulty that a change of f or the 
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transition to another particle/5 passing through q produces only a conformal 
factor. In obvious symbolic notation 

~q[P, f~]  = e'b~Ogq[P,f] with qb(q) ~ R l (10) 

So as the result of these constructions one gets a conformal structure q3 on M. 

3.2. Choice of a Metric 

If, however, one is interested in a specific single metric g, then from 
the preceding a way to construct one explicitly is immediate: One removes 
the arbitrariness of  P and f, but chooses a specific representative of  both. 
Concretely, we choose an event P0 and a freely falling particle P with P0 E 
P. Let us use the notation 3' for a curve of this particle, 3': I C R ~ P C 
M. The curve 3' is a geodesic curve of VW; thus we can choose in particular 
an affine parameter t of  3'; if its corresponding tangent vector is denoted as 
~/, then V~v~/ = 0. Given 3' and t, we have for each q ~ P a function hq and 
thus along "y, resp. P, a specified metric g. Affine parametrizations are deter- 
mined only up to a constant factor; but since a change of this factor multiplies 
the metric gq likewise only with a constant number, it is not necessary and 
not legitimate to make an explicit choice for it. 

If one looks back at (5), one sees the following property of any of the 
EPS metrics: If gq is given by the choice of a particle P and o fa  parametrization 
f, then, if Xq is the tangent vector to P with respect to f i n  q, 

gq(Xq,  Sq)  : - 2 (11) 

Thus, as a matter of convenience we complete our definition of a distinguished 
metric by the prescription 

g := ±g (12) z 

In what follows we work with g and thus for notational convenience omit 
the tilde. 

3.3. Coordinates 

As the next step we introduce a special coordinate system, the so-called 
locally geodesic or Riemannian normal coordinates. [A heuristic motivation 
of this choice--and of that of the metr ic-- is  that it brings about a partially 
comparable situation to our background theory (Schrt~ter and Schelb, 1992; 
1993).] Because of the exponential map TM ~ M they can be introduced in 
a neighborhood of any event in a manifold with a linear connection. Their 
essential characteristic is that all geodesics through a certain event appear in 
the coordinates as straight lines through the origin. That has the consequence 
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that the connection coefficients in these coordinates vanish at the origin; but 
this does not play a role in our considerations. 

For the construction of the coordinates we have to choose a point P0 
(for the origin), an affine parameter on each geodesic, and in TpoM a basis 
Ej, j = 1, 2, 3, 4. We specify them as follows (~ denotes the coordinate map 
U C M ,-. R4):  

(i) Let Po be any point of 3', i.e., on the worldline of the freely falling 
particle used in the definition of g above. Thus t~(p0) = (0, 0, 0, 0). 

(ii) If "~ denotes the tangent vector with respect to the affine parameter 
used in the definition of g, let us choose the basis E~ . . . . .  E4 in TpoM so 
that E4 = 4, and use this affine parameter for the construction of the coordi- 
nates. Thus ~(3'(t)) = (0, 0, 0, t). 

(iii) The other three elements of the basis are chosen as having some 
properties with respect to the g defined above in P0: Let Eb E2, E3 be spacelike 
and such that gpo(Ei, E4) = 0, i = 1, 2, 3, and gpo(Ei, Ei) = O, i, j = 1, 2, 
3, i 4 : j .  

(iv) The affine parameters of the worldlines ~/i corresponding to El, i.e., 

with ~/ = El, i = 1, 2, 3, are such that 

gpo(~t, 4) = -gpo(Ei, Ei), i = 1, 2, 3 (13) 

Analogously, for the timelike geodesic worldlines ¢/through Po, 

gpo('Y, "Y) = gpo('~, ~) (14) 

We remark that there are physical reasons for the use of these conditions 
which we do not discuss here (SchrOter and Schelb, 1993) and that these 
conditions (14) can be used to extend the definition of g beyond the single 
curve ~. 

Obviously for null geodesics the affine parameter cannot be fixed in 
this way; but it has to be such that further particle worldlines crossing the 
null curves (thus not passing through P0) have continuous coordinate curves. 
This determines the parameters of the null geodesics uniquely. 

What do we know about our special g in these coordinates? 
(a) Because of its role in the construction of the coordinates one has at 

the origin 

g ~  = Xl~v = diag(l,  1, 1, - 1 )  (15) 

(b) For the chosen 3' and its parameter we have g(~/, "y) = - 1. If the 
coordinates of the tangent vector ~/ are denoted by v¢, then we know that 
g~vv~'v ~ = - 1; but by construction v is along 3', i.e., on the four-axis of the 
coordinates, of the form v = (0, 0, 0, I), so that this reduces to 
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g~ = - 1  (16) 

along the four-axis. 

4. S Y M M E T R I C I T Y  OF PAIRS OF E Q U A L  13 

The purpose of this section is to demonstrate how a pair of particles of 
equal initial velocity [3 appears in the constructed locally geodesic coordinates. 
It is presupposed that the observer which measures the [3 is mapped on the 
four-axis of the coordinates; since the observed particles are freely falling, 
their coordinate curves are straight lines. Evidently we can restrict ourselves 
to the consideration of pairs whose worldlines lie in the plane spanned by 
the one- and four-axes of the coordinates. Let us denote P(1, 4) := {x = 
(x I, x 2, x 3, x4)lx 2 = x 3 = 0}. Any other pair can be rotated into P(l ,  4) by 
appropriate choice of the basis vector El. 

We will demonstrate that any pair of equal 13 in P(1, 4) is symmetric 
with respect to the four-axis. If we denote the curves of the pair by 3'+ and 
"y_, respectively, and parametrize them as prescribed in (14), and denote the 
corresponding tangent vectors by u+ and u_, then, by assumption, u/+ = 
u/_ = 0 for j = 2, 3 and u4+ = u4__. The task in this section is the proof of 
the following result. 

Proposition 1. 13('Y+) = [3('Y-) means ul+ = -ut- .  

In order to show this, we consider first a very simplified situation where 
the proposition is obvious and then check that in the general situation u+ and 
u_ do not differ from those in the special situation. 

The simplifying assumption is that in the coordinates the metric compo- 
nents are constant: g ~  ~ r l~.  In the general case this equality holds only at 
the origin; but since our statement involves limits at the origin, we can trace 
this back to the Minkowski situation. 

We will write the entities in the general case by a tilde, to distinguish 
them from those in the special case: ~ vs. p, / vs. t, and so on. 

Proof. (a) If g ~  ~ "q~ throughout the coordinate system, then the 
worldlines of  the radar signals are straight lines with the usual angle of 
'rr/4 against the axes. The radar distance p(t) of any event (x ~, 0, 0, x 4) 
on "y+ is determined by p = [xll, t = x4; since 3,+_ are straight lines, dp/dt 
= coast = [3. 

(b) In the general case, g~(x) :/: g~,(0), the worldlines of light differ 
in general from straight lines. This means that if one considers the same 
coordinate lines ",/z and the same event (x t, 0, 0, x 4) on ",/_+ as in (a), then 
the events on the four-axis where a light signal to (x ~, 0, 0, x 4) starts and 
rearrives will differ from the corresponding ones in (a). Hence the resulting 
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values of  fi and i will be different from p and t (although they all tend to 
zero on approaching the origin); cf. Fig. 2. We will show that 

~(~+) :=  lira ~'(t-) = lim p'(t) = [3(~_+) (17) 

If this is valid together with (a), the proposition follows. 
(bl) We will use the fact that to any event (x ~, 0, 0, x 4) on "¢_+ a time i 

as well as a t as in (a) is uniquely assigned. Thus we can read i as a function 
of t which is such that 5(0) = 0. The limits i" --> 0 and t ---> 0 are those in 
which (x 1, 0, 0, x 4) approaches the origin on ~/=. Thus 

lim O'(t-) = l im O'(?(t)) (18)  
i'~0 t--~0 

Therewith we can rewrite (17) 

lim,_.,o fi'(?(t)) = lim l~'(t-) d~/dt, dt/d~ 
lim,._,o p'(t) ,--~o p - ~  = lim ,--~o p'(t) 

- lira ~(f(t) ) .  lim dt 
,~0 p(t) t--,0 5- 

(19) 

T4 

7_ 

t r  

) 

t l; 
te L 

Fig. 2. Two particles of equal [3 in the coordinates. 

7. 

X ! 
v 
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where in the last step the rule of de l 'H6spital was applied. If both factors 
on the right-hand side are unity, (17) is true. 

In the following an event on ~/+_ is characterized by its x 4 coordinate, 
which is identical to the t in situation (a). Let us denote the corresponding 
events of  radar emission and reception on the four-axis for (a) and (b) by te, 
tr, te, tr, respectively, which thus all are treated as functions of  t. Recall the 
definitions 15(t ") = ½(t'r - /'e), p(t) = ½(tr - t~), ? = T(tr' - + te), t = ½(t~ d- re). 
In the first instance we assume that the worldlines of  these radar signals lie 
in P(1, 4). 

(b2) Here we will show 

lim -?e = 1 (20)  
t-~O te 

Let us designate by 6- the coordinate curves of  the radar signals and by 
h their parameter, and let 17 = dr-/clh be its tangent vector. The parametrization 
is such that in the "target" on ~/_+ one has 6-(ho) = (x l, 0, 0, x4), and so that 
tr-I(h)i - h, and thus 11711 - 1. The last sentence of  (b l )  means 9 ~ = 173 = 0. 

For 17, we have g07, 17) = 0; solved for v -4, this gives 

f( / 

which we will use shortly. 
We apply 6- and ~7 to express ~(t) explicitly. For any target on ~± we have 

~'e + 174(X) dX = t (22) 

In the situation of  (a) the analogue for the same target is 

f; ° t = t e "4- •4(h) d ~  = t e -1- ~-o (23) 

since here tr(h) is straight and 124(h) ---- const. Equation (21) expresses how 
174 depends on the coordinates x, viz., via g ~  = g¢v (x ) .  T h e  latter are in the 
EPS theory at least of class C 2 and g44 ~ 0; thus we can develop 

174(X ) = 174(0) q- X 1 • 0174 0174 
Ox ~ (0)  + x 4. c~x4 (0)  + "." (24) 

where 174(0) = v4(0)  = 1. Applying this to the values of 174 along the curve 
6-(~), we can write (22) [with ci abbreviating the constants (0174/0xi)(0),  i = 

1, 4] as 
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f0 h° t-e = t - (1 + c t x l ( h )  + c 2 x 4 ( h )  + " " )  d h  (25) 

Since we  are interested in the l imit  t --~ 0, it is enough to consider  the 9 a in 
a small  ne ighborhood  of  the origin,  say U , ( p o ) .  Since there we have  x l ( h )  

< •, x4(k) < e for  all h ~ (0, ho), one can es t imate  

c l x l ( h )  d k  < C l h o • ,  C2X4(h) dk  -< c2k0• (26) 

In the l imit  process  t ~ 0 the light curves  and vectors  ~(k) are changed;  but 
near  enough  to the origin the d e v e l o p m e n t  (24) and thus the es t imate  (26) 
are true for  all o f  them. For decreas ing  • also the pa ramete r  ko for  the target 
on 3'_* goes to zero with the s ame  order;  so all te rms except  the first in the 
integral in (25) go at least quadrat ica l ly  in ~ to zero in our  limit process ;  
we  have  

- - t - ho - c l x  I d h  - c 2 x  4 d k  . . . .  (27) 
t e t k o  

Since the denomina tors  (t - h0) = te go only l inearly with • to zero, we  have 

lira ~'e - t - h o _ 1 (28) 
,-~o t~ t - h0 

(b3) The  same  reasoning can be repeated for the recept ion t imes ?, and 
t,, with 

t'r = t + ~4(~) d k  (29) 

and with the __. in (21) changing  into ¥ .  Thus  we can infer ana logous ly  

lira -T" = 1 (30) 
t---)O t r 

(b4) Here  we draw f rom (b2) and (b3) the consequence  

l im '-~(f~ + ?~) - 1 
t--,o '"~-(t, + t~) 

(we omit  in this calculat ion the subscr ipt  t --) 0). We have 

[ ] '{  l' l i m i ' ~+  / '~_ l i m t ' +  te + l i m t ' +  t~ 
tr + te tr te 

I ] 1 + l im t~ t, = + l im ~ + 1 because of (28) and (29) 
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[ ,e l 
= lim ~ + ~ ] j  

,im(--/ = l i m ( - - /  + t'~ 
\t', + t,,] \ t ,  + t'~] 

+ te 

(31) 

From lim(G/Tr)'lim(te/te) = 1" 1 it follows that lim/'r = lim(tr" t~lte), SO that 
we can continue (31) by 

( te" tr/?'e + l i m ( - - t  
limkte" trite + te \ t ,  + te,! 

= l i m . - - .  + 
\G + T~] \ t ,  + tel 

[ t r -t- "te'~ 
= l i r a / - - /  = 1 (32) 

Thus we have 

lim f'(t) = 1 (33) 
t~O t 

This means that the second factor on the right-hand side of  (19) is unity. 
(b5) Completely analogously, one calculates on the basis of (b2) and 

(b3) for the remaining factor in (19) 

lim 15(t-) l im~( f, - te) _ 
t~O ~ = t-~O ~(tr re) 1 (34) 

(b6) If we abandon the assumption that the light signals to ',/_+ run 
inside P(I,  4), how does this change the preceding considerations? In the 
development (24) appear additionally 

O94 
x~.a~ (0), i = 2, 3 

which, however, do not contribute in the limit t --~ 0. The zeroth-order term 
~74(0) is, without the restriction to P(1, 4), not uniquely determined; for a 
light curve emitted on the four-axis in a direction outside P(I ,  4) it might 
be different, say ~4(0), to that inside P(1, 4). But obviously in the limit t 
0 these light curves have to approach P(I ,  4) again, since their target on 3'_* 
is in P(1, 4), and thus in the limit the term ~74(0) is the same as in the above 
considerations. Hence the proposition is proven in this case, too. u 
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5. E V A L U A T I O N  O F  T H E  P O S T U L A T E  

In this section we will show that the validity of  the postulate has the 
consequence that in the coordinate system of the observer 3' for the chosen 
metric the components gi4 = 0, i = 1, 2, 3, along the four-axis. This is based 
upon the symmetricity of  the pairs of  particles of  equal 13 derived just above. 

Proposit ion 2. For an EPS space-time model which obeys the postulate, 
the following statement holds: The metric g constructed above has the property 
that in the locally geodesic coordinates of  the freely falling particle 3' its 
components gi4, i = I, 2, 3, vanish in the events (0, 0, 0, x 4) for all x 4 > 0. 

Our proof is similarly divided into two steps as in the preceding section. 
We consider two situations: (a) where in the neighborhood of  (0, 0, 0, t) the 
g~v have constantly the same values (in general different from "rl,,) as in (0, 
0, 0, t), so that in this neighborhood the worldlines of  light are straight lines; 
and (b) the general situation where g¢v(x I, x 2, x 3, x 4) 4: g~,(O, O, 0, t). The 
motivation for this is that the statement of  the proposition refers only to g ~  
at the point (0, 0, 0, t), so that we can trace things back to the simplified case. 

We show that in the limit 13 ~ 0 the rearrival times of radar signals 
emitted at (0, 0, 0, t) to a particle become equal for both situations. Then 
the validity of  the postulate has the consequence that the ratio of the rearrival 
times for a pair 3'_. of  particles has to be unity, and from this then the statement 
about gi4 can be concluded. 

We denote the particles of  the pair of  equal 13 by 3'_., respectively, 
and accordingly the corresponding distances and arrival times in the radar 
measurement by r_., t-*. Since here we have always radar signals emitted at 
(0, 0, 0, t), we will write for the time of  emission throughout t, for the times 
of  rearrival t2. In case (a), where g ~ ( x  I . . . . .  x 4) = g~(O, O, O, t), we will 
designate the arrival times with a caret: ~-, ,~- (see Fig. 3). 

Lemma.  The  following condition holds: 

lim t~ t~ 
i~0 t~- 

(35) 

Proof  Our reasoning is similar to that in Section 4. Because of  the limit, 
we need only consider radar measurements taking place in the mentioned 
neighborhood of  (0, 0, 0, t). 

In a first step we assume that the radar signals run inside P(I,  4). 
(i) The time of arrival of the radar signals to 3'+ on the four-axis is the 

sum of the time-of-flight away and back; hence 



Establishment of Riemannian Space-Time Structure 1783 

7_ 

4- 

Y+ 

Fig. 3. Radar distance measurement for small 13. 

t f  = t + vo4(h) dk + v4(h) d;k (36) 

where again the parameter h is chosen as the x ~ coordinate, and Vo and vi 

are the tangent vectors of  the light worldline for the outgoing and the incoming 
signals (v), > 0, v) < 0), respectively. Analogously, in the case g¢~ = const 

?~+ = t + Ixo" { w4 + w4} (37) 

where i~ designates the parameter and wo, wi are the tangent vectors of  the 
light curves in this case. ix, like h, is chosen as given by x t, but since the 
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light curves here in general will be different, so will be the events on 3'+, 
where they are reflected. Thus I.z0 and ho might be different. 

Because of  the limit [3 --~ 0 the relevant light curves lie inside a small 
neighborhood of Xo = (0, 0, 0, t); thus we develop [the parameter value 
= 0 belongs to (0, 0, 0, t)] 

. dv,4.i 
v4i(x) = vai(x = o) + x - - ~  (0) + .--  (38) 

Abbreviating Co,i :=  (dv~,i/d~)(O), we know that 

h'Co,i dh = 0 (39) 

is small, since ho is bounded by the smallness of  the neighborhood ofxo. Then 

t~ t + ho(v4(O) + v4(0)) i 2 ~-ho(Co + C~) + (40) 
f~- t + ~o(Wo 4 + w 4) t + I%(Wo 4 + w 4) 

tXo is of the same order as ho, so in the limit [3 ---) 0 where ho and ~0 tend 
to zero, the second term and higher order terms on the right-hand side can 
be neglected. Thus 

t~ t + ho(v4(O) + v4(0)) 
lim ~ = lim (41) 
13--,o t~- 13--,o t + lXo(Wo 4 + w/4) 

But according to their construction, v4.i(O) = w~,i, g.,.o(v, v) = gxo(W, w) = 0; 
so the remaining open question is to determine if lim13__,o(ho/IXo) = I. 

(ii) Let pl and P2 be the two events on the target particle 3'+ where the 
light signals in the cases g ~  = const and g~, :~ const arrive, respectively; 
then ho = x~(PO, iXo = x~(p2). Now we can exploit the fact that Pl and P2 
both lie on the same straight line ",/+ in the coordinates. Thus with a constant 
number m ~ R we have 

x4(pl) = m . x l ( p O ,  x4(p2) = m . x l ( p z )  (42) 

In parallel to the preceding considerations [see (41)], we can write 

lim x4(pO - lim t + ho" v~(O) (43) 
~-.~o x4(p2) ~-~o t + ~o" w4 

Plugging (42) into this yields 

m. ho t + Xo" v4(0) 
lira ~ = lim (44) 
13-~0 m .  I~o 13~o t + IXo. w 4 
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o r  

It fo l lows that 

and 

l im --X° = lim t + ~.o w4 
ls--,o ~o 11--,o t + txow~ 

[t + ~im o(~ow4) 1 • l im ko 
114.oo ~0 

(45) 

= t + lim(hoW~) (46) 
134o 

t-lim ho - -  + lira how 4 = t + lim(hoW~) 
1340 1-1, 0 11~0 1340 

(47) 

Noth ing  is changed  by exchang ing  3'+ and "?_; thus, l ikewise,  

t£ 
l im 7-- = 1 (50) 
11.o t~ 

(iii) The  general izabi l i ty  to the case without  the assumpt ion  that the 
light signals run inside P(1, 4) can be concluded  ana logous ly  to the previ-  
ous section. • 

P r o o f  o f  the Propos i t i on .  (a) F rom the l e m m a  it fol lows that 

1 = lim t~ ?~ _ lim t~ lim i'~- 
11 o 11- 0 t-T 11- o (51) 

The  postulate states that lim11_,o[r+(t)/r_(t)] -- 1; because  o f  the definit ion 
r+_(t) = i + 7 ( t f  - t), we know that limls_~o[(t ~- - t ) / ( t~ - t)] = 1 and thus 
l imfs~o( t~l t~)  = 1, since t is constant  in the l imiting process.  Hence  (51) means  

F; 
lira - -  = 1 (52) 
11~0 t f  

(b) Now we demons t ra te  that f rom (52) it results that in Xo = (0, 0, 0, t) 
we have  g)4 = 0. (Note  that here the limit could be omit ted  since the i are 

This  is poss ible  only  if 

l im --k° = 1 or  t = 0 (48) 
a--,o ~o 

but here we have t 4: O. 
Thus  f rom (i) and (ii) we can summar ize :  

t~ + 
l im --" = 1 (49) 
1t--o0 t~- 
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times determined by straight worldlines of light.) The arrival times i2 are 
determined by [cf. (37)] 

~ = t + Ixolw,i + w~}, i ;  = t + uo{.  4 + .~1 (53) 

The vectors uo, ui of  the light to ",/_ are such that uo = wi, ui = w,,. 
Then it follows from (52) that P-o = vo; if qz e "y+ and q2 e "/_ denote the 
events of the observed pairs of  particles where the radar signals are reflected, 
this means that Ixt(qj)l = Ixt(q2)l, since the parametrizations tx and v are 
made by the x I coordinate. The worldlines "y+ are straight lines in P( l ,  4), 
hence x4(ql) = x4(q2). Because we know that 

x 4 ( q l )  = t + 4 W o" kl,0, x4(q2) = t + W 4" V0 (54) 

4 On the other hand, we have then necessarily w 4 = w~. 

r( ,4/2 4 : __ g14 ( 5 5 )  

wo L\g44J g44J g44 

[( Y i w~ = g ,4  _ gJ~ + g,__~4 (56) 
L \g44] g44 1 g44 

where all the g,~ are in Xo = (0, 0, 0, t); since gn4(Xo) = - I, w 4 = w 4 enforces 
gl4 = 0 in (0, 0, 0, t). 

(c) By the use of  pairs of  particles ~/_+ in P(2, 4) and P(3, 4) we get the 
same for g24 and g34- • 

The reasoning so far has referred to one certain particle ",/as "'observer." 
But the entire procedure can be repeated with any other freely falling particle. 

6. DISCUSSION 

1. The event P0 and the observing particle ",/were arbitrarily chosen as 
the basis of our investigations. Obviously everything can be done analogously 
on the basis of  any other event and particle. But is the g for which g/4 = 0 
is found the same (or can it be made the same) for these different bases? 
That this is indeed the case is shown in Schelb (1995a). 

2. The intuitive meaning of  gi4 = 0 along the four-axis is that the light 
cone which at the origin of  the coordinates is symmetric to the four-axis 
remains symmetric for at least a finite piece of  the four-axis. In space-times 
with gi4 ¢ 0, however, which are, as shown in Schelb (1995a), the irreducible 
Weyl space-times, the light cone starts tipping over outside the origin. Our 
locally geodesic coordinates represent the worldlines of  freely falling particles 
for both a Weyl and a Lorentz space-time in a symmetrized way; the feature 
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by which the latter is distinguished from the more general former is that 
there this symmetricity is supplemented by an additional one with regard to 
the worldlines of light. Loosely speaking, Lorentz space-times, in comparison 
with Weylian ones, are characterized by a certain kind of symmetry between 
their conformal and projective structure. 

3. The proofs here have been elaborated in coordinates, and hence are 
somewhat tedious. In order to replace them by more transparent coordinate- 
free arguments one might try to derive that a kind of Gauss lemma holds for the 
space-times obeying the new postulate, i.e., the conservation of orthogonality 
along geodesics. This idea is motivated through the observation that in Lorentz 
space-times, from the Gauss lemma it follows that gi4 = 0 (cf. Schelb, 1995a). 

4. As indicated by the title of  this paper, the basic physical meaning of  
our result is that quantum mechanical reasoning is not necessary for the 
establishment of the pseudo-Riemannian structure of space-time, since a 
postulate in simple classical terms provides the same result. 

REFERENCES 

Audretsch, J. (1983). Riemannian structure of space-time as a consequence of quantum mechan- 
ics, Physical Review D, 27, 2872-2884. 

Audretsch, J., and L~immerzahl, C. (1988). Constructive axiomatic approach to space-time 
torsion, Classical and Quantum Gravity, 5, 1285. 

Audretsch, J., and L/immerzahl, C. (1991a). Reasons for a physical field to obey linear partial 
differential equations, Journal of Mathematical Physics, 32, 1354. 

Audretsch, J., and L~immerzahl. C. (1991b). Establishing space-time geometry by means of 
light rays and free matter waves, Journal of  Mathematical Physics, 32, 2099. 

Audretsch, J., and L~mmer-zahl, C. (1995). The conformal structure of space-time in a construc- 
tive axiomatics based on elements of quantum mechanics, General Relativity and Gravita- 
tion, 27, 233. 

Audretsch, J., Gaehler, F., and Straumann, N. (1984). Wave fields in Weyl spaces and conditions 
for the existence of a preferred pseudo-Riemannian structure, Communications in Mathe- 
matical Physics, 95, 41-51. 

Chandra, R. (1984). Clocks in Weyl space-time, General Relativity and Gravitation, 16, 
1023- t 030. 

Ehlers, J. (1973). Survey of general relativity theory, in Relativity, Astrophysics and Cosmology, 
W. Israel, ed., Reidet, Dordrecht, pp. 1-125. 

Ehlers, J., Pirani, E, and Schild, A. (1972). The geometry of free fall and light propagation, 
in General Relativity, J. O'Raifeartaigh, ed., Clarendon Press, Oxford, pp. 63-84. 

K6hler, E. (1978). Measurement of proper time in a Weyl space, General Relativity and 
Gravitation, 9, 953. 

Meister, R. (1992). A structural analysis of the EPS space-time theory, Diploma thesis, University 
of Paderborn, revised english translation, to be published. 

Perlick, V. (1987). Characterization of standard clocks by means of light rays and freely falling 
particles. General Relativity and Gravitation, 19, 1059. 

Perlick, V. (1991). Observer fields in Weylian spacetime models, Classical Quantum Gravity, 
8, 1369-1385. 



1788 Schelb 

Perlick, V. (1994). Characterization of standard clocks in general relativity, in Semantical 
Aspects of Spacetime Theories, U. Majer and H. J. Schmidt, eds., BI-Wissenschafts- 
Verlag, Mannheim. 

Schelb, U. (1995a). On a condition distinguishing Weyl and Lorentz space-times, Preprint, 
University of Paderborn. 

Schelb, U. (1995b). Distinguishability of Weyl- from Lorentz-spacetimes, to appear in : General 
Relativity and Gravitation ( t 996). 

Schelb, U. (1992). An axiomatic basis of space-time theory. Part II1, Reports on Mathematical 
Physics, 31, 297. 

Schr6ter, J. (1988). An axiomatic basis of space-time theory. Part I, Reports on Mathematical 
Physics, 26, 303. 

Schr6ter, J., and Schelb, U. (1992). An axiomatic basis of space-time theory. Part II, Reports 
on Mathematical Physics, 31, 5. 

SchrOter, J., and Schelb, U. (1993). On the relation between space-time theory and general 
relativity, Preprint 18/1993, Center for Interdisciplinary Research (ZIF), University of 
Bielefeld, Germany. 


